Research Article

Synthesis of tritium labelled [2',6']-L-tyrosine

W. Augustyniak, R. Kański and M. Kańska*

Department of Chemistry, Warsaw University, Pasteur 1 Street, 02-089 Warsaw, Poland

Summary

The synthesis of a specifically ring labelled isotopomer of L-tyrosine, (L-Tyr), using a combination of chemical and enzymatic methods is reported. The tritium labelled [2',6']-L-Tyr has been synthesized *via* catalytic exchange of phenol with tritiated water in the presence of K₂PtCl₄, reverse acid catalysed removal of tritium from the *o*-and *p*-positions of phenol, and subsequent condensation of the resulting $[3',5^{-3}H_2]$ -phenol with *S*-methyl-L-cysteine using the enzyme β -tyrosinase from *Citrobacter freundii*. Copyright © 2004 John Wiley & Sons, Ltd.

Key Words: tritium; deuterium; tyrosine; enzyme; optical isotopomer

Introduction

The enzyme β -tyrosinase (tyrosine phenol lyase, EC 4.1.99.2) has been shown¹⁻³ to catalyze the decomposition of L-Tyr to phenol, pyruvate and ammonia. Under some conditions this enzyme also participates in the reverse reaction leading to formation⁴⁻⁶ of L-Tyr (Scheme 1).

As the metabolism of L-Tyr is an important process of living cells, the mechanism of the above reaction is of special interest, particularly biologists.

Scheme 1. Decomposition of L-tyrosine catalysed by enzyme β -tyrosinase

*Correspondence to: M. Kańska, Department of Chemistry, Warsaw University, Pasteur 1 Street, 02-089 Warsaw, Poland. E-mail: mkanska@alfa.chem.uw.edu.pl

Contract/grant sponsor: Committee for Scientific Research (Poland); contract/grant number: KBN 4 T09A 039 23

Copyright © 2004 John Wiley & Sons, Ltd.

Received 14 June 2004 Revised 26 July 2004 Accepted 16 August 2004 This multistep reaction involving hydrogen transport and formation or rupture of the bond between the C_1 ring and C_3 side chain carbon atoms is still not clear. Some mechanistic questions can be answered by determining kinetic isotope effects (KIE) for each atom involved in the postulated rate determining step.^{7,8} For this purpose the L-enantiomer form of specifically tritium labelled tyrosine is needed. In the literature there are several papers which describe the synthesis of deuterium^{9–15} and tritium^{16–20} labelled tyrosine. Unfortunately most of them are not useful for our proposed KIE studies. In our earlier paper²¹ we described the synthesis of $[2', 6'^{-3}H_2]$ -L-Tyr by hydroxylation of commercial $[2', 6^{-3}H_2]$ -L-phenylalanine using the enzyme L-phenylalanine hydroxylase.²¹

Results and discussion

The new route to the synthesis of $[2',6'-{}^{3}H_{2}]$ -L-Tyr developed by us consists of a combination of chemical and enzymatic methods. First, the key intermediate i.e., $[3,5-{}^{3}H_{2}]$ -phenol was obtained as a result of H/T exchange between phenol and tritiated water. In turn it was condensed with S-methyl-L-cysteine using the enzyme β -tyrosinase from *Citrobacter freundii* (Scheme 2).

The literature data^{22–26} show that phenol can be catalytically exchanged with deuteriated or tritiated water selectively in the *o*- and *p*-positions or per labelled. By the reverse acid catalysed exchange of uniformly tritiated phenol, **2**, with water it is possible to prepare the 3,5-tritiated substrate, **3**, needed for the enzymatic synthesis of the final product **4** (Scheme 2).

Scheme 2. Synthesis of [2',6'-³H₂]-L-tyrosine

Copyright © 2004 John Wiley & Sons, Ltd.

To check these expectations we have investigated the H/D exchange between phenol and heavy water catalyzed with acid and a salt of divalent platinum. The degree of incorporation and removal of deuterium from the aromatic ring was determined using the ¹H NMR spectra of samples of exchanged phenol. Homogeneous, K₂PtCl₄ catalysed exchange gives phenol deuteriated in the *o*and *p*-positions^{22, 24–26} as well as the *m*-positions. Also the reverse acid exchange of uniformly deuteriated phenol with water does not remove label from the *m*-position, giving selectively labelled [3,5-²H₂]-phenol.

Therefore, in the first step we prepared uniformly ring tritiated phenol, **2**, by H/T exchange with HTO in the presence of K₂PtCl₄ catalyst. In the next step reverse acid catalysed exchange of **2** with water removes²⁶ the tritium label from the *o*- and *p*-positions of **2** leading to the [3,5-³H₂] product **3**.

Experimental

- 1. *Materials*: Tritiated water was obtained from INC Pharmaceutical Inc., USA. Deuteriated water was purchased from The Radioisotope Production and Distribution Center, Poland. Scintillation cocktails were obtained from Rotiszint (Germany). Amberlit IR-120 (2–50 mesh) and TLC plates were the products of Aldrich and Merck, respectively. Cofactor i.e., pyridoxal 5-phosphate, PLP, S-methyl-L-cysteine, mercaptoethanol (HSCH₂CH₂OH) were purchased from Sigma. The enzyme β -tyrosinase (EC 4.1.99.2) from *Citrobacter Freundii* was kindly given by Prof. R. Phillips from the University of Georgia, Athens, USA.
- 2. Methods: The concentration of L-Tyr was determined spectrophotometrically²⁷ using a sensitive and reproducible method for assaying of tyrosine in biological media.²⁸ Under appropriate conditions tyrosine reacts with l-nitroso-5-naphthol to yield a stable yellow product, the concentration of which can be determined by measuring the absorbance at 490 nm using a Shimadzu-UV-VIS-102 CE-LV spectrometer (Japan). The catalyst i.e., K₂PtCl₄, was prepared according to the literature.²⁹ In the preliminary deuterium labelling studies of phenol the degree and position of incorporation of the label was determined from ¹H NMR spectra using a Varian 500 MHz NMR spectrometer. For the tritium work the radioactivity was determined using a liquid scintillation counter (Lisa LSC470-Raytest, Germany).
- 3. [G-³H]-phenol, 2. This intermediate was synthesized by isotope exchange between phenol and tritiated water catalysed by the salt of divalent platinum. To the glass ampoule 1 g (10.6 mmol) of phenol, 100 mg (0.24 mmol) of K₂PtCl₄, 0.2 ml of concentrated HC1 and 0.5 ml of tritiated water with a total activity 200 MBq were added. The ampoule was frozen with liquid nitrogen, degassed, sealed and heated at 100°C for 24 h. After

cooling, the ampoule was opened and 5 ml of water was added to the postreaction mixture. Phenol was separated from the catalyst by extraction $(5 \times 5 \text{ ml})$ with diethyl ether. Next, the combined organic layers were washed $(5 \times 10 \text{ ml})$ with water. The solvent from the organic layer was evaporated yielding 850 mg (about 9 mmol) of crude **2** of total radioactivity 36.8 MBq (about 85% chemical yield).

- 4. $[3,5^{-3}H_2]$ -phenol, **3**. The above crude sample of **2** dissolved in 12 ml of 2M HCl was placed in an ampoule, degassed as above, sealed, and heated at 100°C for 24 h. The post reaction mixture was extracted with 5×5 ml of diethyl ether. Combined organic layers were washed with 2×5 ml of water. The solvent was evaporated off under reduced pressure. The phenol was separated from the residue by sublimation (110°C, about 1 Pa). As a result 675 mgs (7.18 mmol) of **3** of total radioactivity 4.5 MBq (627 kBq/mmol specific activity) were obtained (79.3% chemical yield).
- 5. $[2', 6'^{-3}H_2]$ -L-tyrosine, **4**. The enzymatic reaction was carried out in an encapped glass vial. To this 4 ml of 0.1 M phosphate buffer (pH 8), 29.8 mg (221 µmol) of S-methyl-L-cysteine, 0.1 mmol of PLP, 1 mmol of mercaptoethanol and 20 U of β -tyrosinase (EC 4.1.99.2) from *Citrobacter freundii* were added. To this vial the solution of 15.3 mg (163 µmol) of **3** dissolved in 0.5 ml of phosphate buffer was added in 5 equal portions at the start and subsequently after 17, 25, 41 and 49 h of the incubation. The incubation was carried out at 30°C for 5 days. The precipitated crystals of **4** were collected and washed with ethanol and diethyl ether. As a result 5.3 mg (29 µmol) of **4** of total radioactivity of 1.85×10^5 Bq (specific activity 627 MBq/mmol was obtained (18% radiochemical and chemical yield).

References

- 1. Kumagai H, Yamada H, Matsui H, Ohkishi H, Ogata K. J Biol Chem 1970; 245: 1767–1772.
- 2. Kumagai H, Yamada H, Matsui H, Ohkishi H, Ogata K. J Biol Chem 1970; 245: 1773–1777.
- Yamada H, Kumagai H, Kashima N, Torii H. Biochem Biophys Res Comm 1972; 46: 370–374.
- 4. Kumagai H, Utagawa T, Yamada H. J Biol Chem 1975; 250: 1661–1667.
- 5. Nagasawa T, Utagawa T, Goto J, Kim CJ, Tani Y, Kumagai H, Yamada H. *Eur J Biochem* 1981; **117**: 33–40.
- Palcic MM, Shen SJ, Schleicher E, Kumagai H, Sawada S, Yamada H, Floss HG. Z Naturforsch C 1987; 42: 307–318.
- 7. Fry A. Chem Soc Rev 1972; 1: 163-210.
- Huskey WP. Origins and interpretations of heavy-atom isotope effects. In *Enzyme Mechanism from Isotope Effects*, Cook F (ed.). CRC Press: Boca Raton, FL, 1991; 37–73.

- Griffiths DV, Feeney J, Roberts GCK, Burgen ASV. *Biochim Biophys Acta* 1976; 446: 479–485.
- 10. Matthews HR, Mattheus KS, Opella SJ. Biochim Biophys Acta 1977; 497: 1-13.
- 11. Wishart DS, Sykes BD, Richards FM. Biochim Biophys Acta 1993; 1164: 34-46.
- 12. Walker TE, Matheny C, Storm CB, Hayden H. J Org Chem 1986; 51: 1175–1179.
- Faleev NG, Ruvinov SB, Saporovskaya MB, Belikov VM, Zakomyrdina LN, Sakharova IS, Torchinsky YM. *Tetrahedron Letts* 1990; 48: 7051–7054.
- 14. Oba M, Ueno R, Fukuoka (neé Yoshida) M, Kainosho M, Nishiyama K. *J Chem Soc Perkin Trans I* 1995; 1603–1609.
- 15. Kendall JT. J Label Compd Radiopharm 2000; 43: 917-924.
- 16. Kirby GW, Michael J. Chem Comm 1971; 187-188.
- 17. Strange PG, Staunton J, Wiltshire HR, Battersby AR, Hanson KR, Havir EA. *J Chem Soc Perkin Trans I* 1972; 2364–2372.
- 18. Battersby AR, Chrystal EFT, Staunton J. J Chem Soc Perkin Trans I 1980; 31-42.
- 19. Kańska M, Drabarek S. Radiochem Radioanal Lett 1980; 44: 207-210.
- 20. Asano Y, Lee JJ, Shieh TL, Spreafico F, Kowal C, Floss HG. J Am Chem Soc 1985; 107: 4314–4320.
- Augustniak W, Suchecki P, Jemielity J, Kanski R, Kanska M. J Label Compd Radiopharm 2002; 45: 559–567.
- 22. Garnett JL. Catal Rev 1971; 5: 229-268.
- 23. Werstiuk NH, Kadai T. Can J Chem 1973; 52: 2169-2171.
- 24. Clifford MC, Evans EA, Kilner AE, Warrell DG. J Label Compds 1975; 11: 435–444.
- 25. Kańska M, Drabarek S. Polish J Chem 1981; 55: 1559-1562.
- 26. Kańska M. J Radioanal Nucl Chem 1988; 125: 183-188.
- 27. Augustyniak W, Kański R, Kańska M. J Label Compd Radiopharm 2001; 44: 553–560.
- 28. Udenfriend S, Cooper JR. J Biol Chem 1952; 196: 227-233.
- 29. Klutschnikov NF, Savelieva RN. Z Nieorg Chim 1965; 1: 2764-2766.